博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Android中的Parcel机制(上)
阅读量:4843 次
发布时间:2019-06-11

本文共 39297 字,大约阅读时间需要 130 分钟。

一.先从Serialize说起

         我们都知道JAVA中的Serialize机制,译成串行化、序列化……,其作用是能将数据对象存入字节流当中,在需要时重新生成对象。主要应用是利用外部存储设备保存对象状态,以及通过网络传输对象等。

 

二.Android中的新的序列化机制

         在Android系统中,定位为针对内存受限的设备,因此对性能要求更高,另外系统中采用了新的IPC(进程间通信)机制,必然要求使用性能更出色的对象传输方式。在这样的环境下,Parcel被设计出来,其定位就是轻量级的高效的对象序列化和反序列化机制。

 

三.Parcel类的背后

在Framework中有parcel类,源码路径是:

Frameworks/base/core/java/android/os/Parcel.java

典型的源码片断如下:

  
/**  * Write an integer value into the parcel at the current dataPosition(),  * growing dataCapacity() if needed.  */  public final native void writeInt(int val);    /**  * Write a long integer value into the parcel at the current dataPosition(),  * growing dataCapacity() if needed.  */  public final native void writeLong(long val);

从中我们看到,从这个源程序文件中我们看不到真正的功能是如何实现的,必须透过JNI往下走了。于是,Frameworks/base/core/jni/android_util_Binder.cpp中找到了线索

static void android_os_Parcel_writeInt(JNIEnv* env, jobject clazz, jint val)  {      Parcel* parcel = parcelForJavaObject(env, clazz);      if (parcel != NULL) {          const status_t err = parcel->writeInt32(val);          if (err != NO_ERROR) {              jniThrowException(env, "java/lang/OutOfMemoryError", NULL);          }      }  }    static void android_os_Parcel_writeLong(JNIEnv* env, jobject clazz, jlong val)  {      Parcel* parcel = parcelForJavaObject(env, clazz);      if (parcel != NULL) {          const status_t err = parcel->writeInt64(val);          if (err != NO_ERROR) {              jniThrowException(env, "java/lang/OutOfMemoryError", NULL);          }      }  }

从这里我们可以得到的信息是函数的实现依赖于Parcel指针,因此还需要找到Parcel的类定义,注意,这里的类已经是用C++语言实现的了。

找到Frameworks/base/include/binder/parcel.h和Frameworks/base/libs/binder/parcel.cpp。终于找到了最终的实现代码了。

有兴趣的朋友可以自己读一下,不难理解,这里把基本的思路总结一下:

1.       整个读写全是在内存中进行,主要是通过malloc()、realloc()、memcpy()等内存操作进行,所以效率比JAVA序列化中使用外部存储器会高很多;

2.       读写时是4字节对齐的,可以看到#define PAD_SIZE(s) (((s)+3)&~3)这句宏定义就是在做这件事情;

3.       如果预分配的空间不够时newSize = ((mDataSize+len)*3)/2;会一次多分配50%;

4.       对于普通数据,使用的是mData内存地址,对于IBinder类型的数据以及FileDescriptor使用的是mObjects内存地址。后者是通过flatten_binder()和unflatten_binder()实现的,目的是反序列化时读出的对象就是原对象而不用重新new一个新对象。

 

好了,这就是Parcel背后的动作,全是在一块内存里进行读写操作,就不啰嗦了,把parcel的代码贴在这供没有源码的朋友参考吧。接下来我会用一个小DEMO演示一下Parcel类在应用程序中的使用,详见《》。

/*  * Copyright (C) 2005 The Android Open Source Project  *  * Licensed under the Apache License, Version 2.0 (the "License");  * you may not use this file except in compliance with the License.  * You may obtain a copy of the License at  *  *      http://www.apache.org/licenses/LICENSE-2.0  *  * Unless required by applicable law or agreed to in writing, software  * distributed under the License is distributed on an "AS IS" BASIS,  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  * See the License for the specific language governing permissions and  * limitations under the License.  */    #ifndef ANDROID_PARCEL_H  #define ANDROID_PARCEL_H    #include 
#include
#include
#include
#include
// --------------------------------------------------------------------------- namespace android { class IBinder; class ProcessState; class String8; class TextOutput; class Flattenable; struct flat_binder_object; // defined in support_p/binder_module.h class Parcel { public: Parcel(); ~Parcel(); const uint8_t* data() const; size_t dataSize() const; size_t dataAvail() const; size_t dataPosition() const; size_t dataCapacity() const; status_t setDataSize(size_t size); void setDataPosition(size_t pos) const; status_t setDataCapacity(size_t size); status_t setData(const uint8_t* buffer, size_t len); status_t appendFrom(Parcel *parcel, size_t start, size_t len); bool hasFileDescriptors() const; status_t writeInterfaceToken(const String16& interface); bool enforceInterface(const String16& interface) const; bool checkInterface(IBinder*) const; void freeData(); const size_t* objects() const; size_t objectsCount() const; status_t errorCheck() const; void setError(status_t err); status_t write(const void* data, size_t len); void* writeInplace(size_t len); status_t writeUnpadded(const void* data, size_t len); status_t writeInt32(int32_t val); status_t writeInt64(int64_t val); status_t writeFloat(float val); status_t writeDouble(double val); status_t writeIntPtr(intptr_t val); status_t writeCString(const char* str); status_t writeString8(const String8& str); status_t writeString16(const String16& str); status_t writeString16(const char16_t* str, size_t len); status_t writeStrongBinder(const sp
& val); status_t writeWeakBinder(const wp
& val); status_t write(const Flattenable& val); // Place a native_handle into the parcel (the native_handle's file- // descriptors are dup'ed, so it is safe to delete the native_handle // when this function returns). // Doesn't take ownership of the native_handle. status_t writeNativeHandle(const native_handle* handle); // Place a file descriptor into the parcel. The given fd must remain // valid for the lifetime of the parcel. status_t writeFileDescriptor(int fd); // Place a file descriptor into the parcel. A dup of the fd is made, which // will be closed once the parcel is destroyed. status_t writeDupFileDescriptor(int fd); status_t writeObject(const flat_binder_object& val, bool nullMetaData); void remove(size_t start, size_t amt); status_t read(void* outData, size_t len) const; const void* readInplace(size_t len) const; int32_t readInt32() const; status_t readInt32(int32_t *pArg) const; int64_t readInt64() const; status_t readInt64(int64_t *pArg) const; float readFloat() const; status_t readFloat(float *pArg) const; double readDouble() const; status_t readDouble(double *pArg) const; intptr_t readIntPtr() const; status_t readIntPtr(intptr_t *pArg) const; const char* readCString() const; String8 readString8() const; String16 readString16() const; const char16_t* readString16Inplace(size_t* outLen) const; sp
readStrongBinder() const; wp
readWeakBinder() const; status_t read(Flattenable& val) const; // Retrieve native_handle from the parcel. This returns a copy of the // parcel's native_handle (the caller takes ownership). The caller // must free the native_handle with native_handle_close() and // native_handle_delete(). native_handle* readNativeHandle() const; // Retrieve a file descriptor from the parcel. This returns the raw fd // in the parcel, which you do not own -- use dup() to get your own copy. int readFileDescriptor() const; const flat_binder_object* readObject(bool nullMetaData) const; // Explicitly close all file descriptors in the parcel. void closeFileDescriptors(); typedef void (*release_func)(Parcel* parcel, const uint8_t* data, size_t dataSize, const size_t* objects, size_t objectsSize, void* cookie); const uint8_t* ipcData() const; size_t ipcDataSize() const; const size_t* ipcObjects() const; size_t ipcObjectsCount() const; void ipcSetDataReference(const uint8_t* data, size_t dataSize, const size_t* objects, size_t objectsCount, release_func relFunc, void* relCookie); void print(TextOutput& to, uint32_t flags = 0) const; private: Parcel(const Parcel& o); Parcel& operator=(const Parcel& o); status_t finishWrite(size_t len); void releaseObjects(); void acquireObjects(); status_t growData(size_t len); status_t restartWrite(size_t desired); status_t continueWrite(size_t desired); void freeDataNoInit(); void initState(); void scanForFds() const; template
status_t readAligned(T *pArg) const; template
T readAligned() const; template
status_t writeAligned(T val); status_t mError; uint8_t* mData; size_t mDataSize; size_t mDataCapacity; mutable size_t mDataPos; size_t* mObjects; size_t mObjectsSize; size_t mObjectsCapacity; mutable size_t mNextObjectHint; mutable bool mFdsKnown; mutable bool mHasFds; release_func mOwner; void* mOwnerCookie; }; // --------------------------------------------------------------------------- inline TextOutput& operator<<(TextOutput& to, const Parcel& parcel) { parcel.print(to); return to; } // --------------------------------------------------------------------------- // Generic acquire and release of objects. void acquire_object(const sp
& proc, const flat_binder_object& obj, const void* who); void release_object(const sp
& proc, const flat_binder_object& obj, const void* who); void flatten_binder(const sp
& proc, const sp
& binder, flat_binder_object* out); void flatten_binder(const sp
& proc, const wp
& binder, flat_binder_object* out); status_t unflatten_binder(const sp
& proc, const flat_binder_object& flat, sp
* out); status_t unflatten_binder(const sp
& proc, const flat_binder_object& flat, wp
* out); }; // namespace android // --------------------------------------------------------------------------- #endif // ANDROID_PARCEL_H

 下面是函数的实现

/*  * Copyright (C) 2005 The Android Open Source Project  *  * Licensed under the Apache License, Version 2.0 (the "License");  * you may not use this file except in compliance with the License.  * You may obtain a copy of the License at  *  *      http://www.apache.org/licenses/LICENSE-2.0  *  * Unless required by applicable law or agreed to in writing, software  * distributed under the License is distributed on an "AS IS" BASIS,  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  * See the License for the specific language governing permissions and  * limitations under the License.  */    #define LOG_TAG "Parcel"  //#define LOG_NDEBUG 0    #include 
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifndef INT32_MAX #define INT32_MAX ((int32_t)(2147483647)) #endif #define LOG_REFS(...) //#define LOG_REFS(...) LOG(LOG_DEBUG, "Parcel", __VA_ARGS__) // --------------------------------------------------------------------------- #define PAD_SIZE(s) (((s)+3)&~3) // XXX This can be made public if we want to provide // support for typed data. struct small_flat_data { uint32_t type; uint32_t data; }; namespace android { void acquire_object(const sp
& proc, const flat_binder_object& obj, const void* who) { switch (obj.type) { case BINDER_TYPE_BINDER: if (obj.binder) { LOG_REFS("Parcel %p acquiring reference on local %p", who, obj.cookie); static_cast
(obj.cookie)->incStrong(who); } return; case BINDER_TYPE_WEAK_BINDER: if (obj.binder) static_cast
(obj.binder)->incWeak(who); return; case BINDER_TYPE_HANDLE: { const sp
b = proc->getStrongProxyForHandle(obj.handle); if (b != NULL) { LOG_REFS("Parcel %p acquiring reference on remote %p", who, b.get()); b->incStrong(who); } return; } case BINDER_TYPE_WEAK_HANDLE: { const wp
b = proc->getWeakProxyForHandle(obj.handle); if (b != NULL) b.get_refs()->incWeak(who); return; } case BINDER_TYPE_FD: { // intentionally blank -- nothing to do to acquire this, but we do // recognize it as a legitimate object type. return; } } LOGD("Invalid object type 0x%08lx", obj.type); } void release_object(const sp
& proc, const flat_binder_object& obj, const void* who) { switch (obj.type) { case BINDER_TYPE_BINDER: if (obj.binder) { LOG_REFS("Parcel %p releasing reference on local %p", who, obj.cookie); static_cast
(obj.cookie)->decStrong(who); } return; case BINDER_TYPE_WEAK_BINDER: if (obj.binder) static_cast
(obj.binder)->decWeak(who); return; case BINDER_TYPE_HANDLE: { const sp
b = proc->getStrongProxyForHandle(obj.handle); if (b != NULL) { LOG_REFS("Parcel %p releasing reference on remote %p", who, b.get()); b->decStrong(who); } return; } case BINDER_TYPE_WEAK_HANDLE: { const wp
b = proc->getWeakProxyForHandle(obj.handle); if (b != NULL) b.get_refs()->decWeak(who); return; } case BINDER_TYPE_FD: { if (obj.cookie != (void*)0) close(obj.handle); return; } } LOGE("Invalid object type 0x%08lx", obj.type); } inline static status_t finish_flatten_binder( const sp
& binder, const flat_binder_object& flat, Parcel* out) { return out->writeObject(flat, false); } status_t flatten_binder(const sp
& proc, const sp
& binder, Parcel* out) { flat_binder_object obj; obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS; if (binder != NULL) { IBinder *local = binder->localBinder(); if (!local) { BpBinder *proxy = binder->remoteBinder(); if (proxy == NULL) { LOGE("null proxy"); } const int32_t handle = proxy ? proxy->handle() : 0; obj.type = BINDER_TYPE_HANDLE; obj.handle = handle; obj.cookie = NULL; } else { obj.type = BINDER_TYPE_BINDER; obj.binder = local->getWeakRefs(); obj.cookie = local; } } else { obj.type = BINDER_TYPE_BINDER; obj.binder = NULL; obj.cookie = NULL; } return finish_flatten_binder(binder, obj, out); } status_t flatten_binder(const sp
& proc, const wp
& binder, Parcel* out) { flat_binder_object obj; obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS; if (binder != NULL) { sp
real = binder.promote(); if (real != NULL) { IBinder *local = real->localBinder(); if (!local) { BpBinder *proxy = real->remoteBinder(); if (proxy == NULL) { LOGE("null proxy"); } const int32_t handle = proxy ? proxy->handle() : 0; obj.type = BINDER_TYPE_WEAK_HANDLE; obj.handle = handle; obj.cookie = NULL; } else { obj.type = BINDER_TYPE_WEAK_BINDER; obj.binder = binder.get_refs(); obj.cookie = binder.unsafe_get(); } return finish_flatten_binder(real, obj, out); } // XXX How to deal? In order to flatten the given binder, // we need to probe it for information, which requires a primary // reference... but we don't have one. // // The OpenBinder implementation uses a dynamic_cast<> here, // but we can't do that with the different reference counting // implementation we are using. LOGE("Unable to unflatten Binder weak reference!"); obj.type = BINDER_TYPE_BINDER; obj.binder = NULL; obj.cookie = NULL; return finish_flatten_binder(NULL, obj, out); } else { obj.type = BINDER_TYPE_BINDER; obj.binder = NULL; obj.cookie = NULL; return finish_flatten_binder(NULL, obj, out); } } inline static status_t finish_unflatten_binder( BpBinder* proxy, const flat_binder_object& flat, const Parcel& in) { return NO_ERROR; } status_t unflatten_binder(const sp
& proc, const Parcel& in, sp
* out) { const flat_binder_object* flat = in.readObject(false); if (flat) { switch (flat->type) { case BINDER_TYPE_BINDER: *out = static_cast
(flat->cookie); return finish_unflatten_binder(NULL, *flat, in); case BINDER_TYPE_HANDLE: *out = proc->getStrongProxyForHandle(flat->handle); return finish_unflatten_binder( static_cast
(out->get()), *flat, in); } } return BAD_TYPE; } status_t unflatten_binder(const sp
& proc, const Parcel& in, wp
* out) { const flat_binder_object* flat = in.readObject(false); if (flat) { switch (flat->type) { case BINDER_TYPE_BINDER: *out = static_cast
(flat->cookie); return finish_unflatten_binder(NULL, *flat, in); case BINDER_TYPE_WEAK_BINDER: if (flat->binder != NULL) { out->set_object_and_refs( static_cast
(flat->cookie), static_cast
(flat->binder)); } else { *out = NULL; } return finish_unflatten_binder(NULL, *flat, in); case BINDER_TYPE_HANDLE: case BINDER_TYPE_WEAK_HANDLE: *out = proc->getWeakProxyForHandle(flat->handle); return finish_unflatten_binder( static_cast
(out->unsafe_get()), *flat, in); } } return BAD_TYPE; } // --------------------------------------------------------------------------- Parcel::Parcel() { initState(); } Parcel::~Parcel() { freeDataNoInit(); } const uint8_t* Parcel::data() const { return mData; } size_t Parcel::dataSize() const { return (mDataSize > mDataPos ? mDataSize : mDataPos); } size_t Parcel::dataAvail() const { // TODO: decide what to do about the possibility that this can // report an available-data size that exceeds a Java int's max // positive value, causing havoc. Fortunately this will only // happen if someone constructs a Parcel containing more than two // gigabytes of data, which on typical phone hardware is simply // not possible. return dataSize() - dataPosition(); } size_t Parcel::dataPosition() const { return mDataPos; } size_t Parcel::dataCapacity() const { return mDataCapacity; } status_t Parcel::setDataSize(size_t size) { status_t err; err = continueWrite(size); if (err == NO_ERROR) { mDataSize = size; LOGV("setDataSize Setting data size of %p to %d/n", this, mDataSize); } return err; } void Parcel::setDataPosition(size_t pos) const { mDataPos = pos; mNextObjectHint = 0; } status_t Parcel::setDataCapacity(size_t size) { if (size > mDataSize) return continueWrite(size); return NO_ERROR; } status_t Parcel::setData(const uint8_t* buffer, size_t len) { status_t err = restartWrite(len); if (err == NO_ERROR) { memcpy(const_cast
(data()), buffer, len); mDataSize = len; mFdsKnown = false; } return err; } status_t Parcel::appendFrom(Parcel *parcel, size_t offset, size_t len) { const sp
proc(ProcessState::self()); status_t err; uint8_t *data = parcel->mData; size_t *objects = parcel->mObjects; size_t size = parcel->mObjectsSize; int startPos = mDataPos; int firstIndex = -1, lastIndex = -2; if (len == 0) { return NO_ERROR; } // range checks against the source parcel size if ((offset > parcel->mDataSize) || (len > parcel->mDataSize) || (offset + len > parcel->mDataSize)) { return BAD_VALUE; } // Count objects in range for (int i = 0; i < (int) size; i++) { size_t off = objects[i]; if ((off >= offset) && (off < offset + len)) { if (firstIndex == -1) { firstIndex = i; } lastIndex = i; } } int numObjects = lastIndex - firstIndex + 1; // grow data err = growData(len); if (err != NO_ERROR) { return err; } // append data memcpy(mData + mDataPos, data + offset, len); mDataPos += len; mDataSize += len; if (numObjects > 0) { // grow objects if (mObjectsCapacity < mObjectsSize + numObjects) { int newSize = ((mObjectsSize + numObjects)*3)/2; size_t *objects = (size_t*)realloc(mObjects, newSize*sizeof(size_t)); if (objects == (size_t*)0) { return NO_MEMORY; } mObjects = objects; mObjectsCapacity = newSize; } // append and acquire objects int idx = mObjectsSize; for (int i = firstIndex; i <= lastIndex; i++) { size_t off = objects[i] - offset + startPos; mObjects[idx++] = off; mObjectsSize++; flat_binder_object* flat = reinterpret_cast
(mData + off); acquire_object(proc, *flat, this); if (flat->type == BINDER_TYPE_FD) { // If this is a file descriptor, we need to dup it so the // new Parcel now owns its own fd, and can declare that we // officially know we have fds. flat->handle = dup(flat->handle); flat->cookie = (void*)1; mHasFds = mFdsKnown = true; } } } return NO_ERROR; } bool Parcel::hasFileDescriptors() const { if (!mFdsKnown) { scanForFds(); } return mHasFds; } status_t Parcel::writeInterfaceToken(const String16& interface) { // currently the interface identification token is just its name as a string return writeString16(interface); } bool Parcel::checkInterface(IBinder* binder) const { return enforceInterface(binder->getInterfaceDescriptor()); } bool Parcel::enforceInterface(const String16& interface) const { const String16 str(readString16()); if (str == interface) { return true; } else { LOGW("**** enforceInterface() expected '%s' but read '%s'/n", String8(interface).string(), String8(str).string()); return false; } } const size_t* Parcel::objects() const { return mObjects; } size_t Parcel::objectsCount() const { return mObjectsSize; } status_t Parcel::errorCheck() const { return mError; } void Parcel::setError(status_t err) { mError = err; } status_t Parcel::finishWrite(size_t len) { //printf("Finish write of %d/n", len); mDataPos += len; LOGV("finishWrite Setting data pos of %p to %d/n", this, mDataPos); if (mDataPos > mDataSize) { mDataSize = mDataPos; LOGV("finishWrite Setting data size of %p to %d/n", this, mDataSize); } //printf("New pos=%d, size=%d/n", mDataPos, mDataSize); return NO_ERROR; } status_t Parcel::writeUnpadded(const void* data, size_t len) { size_t end = mDataPos + len; if (end < mDataPos) { // integer overflow return BAD_VALUE; } if (end <= mDataCapacity) { restart_write: memcpy(mData+mDataPos, data, len); return finishWrite(len); } status_t err = growData(len); if (err == NO_ERROR) goto restart_write; return err; } status_t Parcel::write(const void* data, size_t len) { void* const d = writeInplace(len); if (d) { memcpy(d, data, len); return NO_ERROR; } return mError; } void* Parcel::writeInplace(size_t len) { const size_t padded = PAD_SIZE(len); // sanity check for integer overflow if (mDataPos+padded < mDataPos) { return NULL; } if ((mDataPos+padded) <= mDataCapacity) { restart_write: //printf("Writing %ld bytes, padded to %ld/n", len, padded); uint8_t* const data = mData+mDataPos; // Need to pad at end? if (padded != len) { #if BYTE_ORDER == BIG_ENDIAN static const uint32_t mask[4] = { 0x00000000, 0xffffff00, 0xffff0000, 0xff000000 }; #endif #if BYTE_ORDER == LITTLE_ENDIAN static const uint32_t mask[4] = { 0x00000000, 0x00ffffff, 0x0000ffff, 0x000000ff }; #endif //printf("Applying pad mask: %p to %p/n", (void*)mask[padded-len], // *reinterpret_cast
(data+padded-4)); *reinterpret_cast
(data+padded-4) &= mask[padded-len]; } finishWrite(padded); return data; } status_t err = growData(padded); if (err == NO_ERROR) goto restart_write; return NULL; } status_t Parcel::writeInt32(int32_t val) { return writeAligned(val); } status_t Parcel::writeInt64(int64_t val) { return writeAligned(val); } status_t Parcel::writeFloat(float val) { return writeAligned(val); } status_t Parcel::writeDouble(double val) { return writeAligned(val); } status_t Parcel::writeIntPtr(intptr_t val) { return writeAligned(val); } status_t Parcel::writeCString(const char* str) { return write(str, strlen(str)+1); } status_t Parcel::writeString8(const String8& str) { status_t err = writeInt32(str.bytes()); if (err == NO_ERROR) { err = write(str.string(), str.bytes()+1); } return err; } status_t Parcel::writeString16(const String16& str) { return writeString16(str.string(), str.size()); } status_t Parcel::writeString16(const char16_t* str, size_t len) { if (str == NULL) return writeInt32(-1); status_t err = writeInt32(len); if (err == NO_ERROR) { len *= sizeof(char16_t); uint8_t* data = (uint8_t*)writeInplace(len+sizeof(char16_t)); if (data) { memcpy(data, str, len); *reinterpret_cast
(data+len) = 0; return NO_ERROR; } err = mError; } return err; } status_t Parcel::writeStrongBinder(const sp
& val) { return flatten_binder(ProcessState::self(), val, this); } status_t Parcel::writeWeakBinder(const wp
& val) { return flatten_binder(ProcessState::self(), val, this); } status_t Parcel::writeNativeHandle(const native_handle* handle) { if (!handle || handle->version != sizeof(native_handle)) return BAD_TYPE; status_t err; err = writeInt32(handle->numFds); if (err != NO_ERROR) return err; err = writeInt32(handle->numInts); if (err != NO_ERROR) return err; for (int i=0 ; err==NO_ERROR && i
numFds ; i++) err = writeDupFileDescriptor(handle->data[i]); if (err != NO_ERROR) { LOGD("write native handle, write dup fd failed"); return err; } err = write(handle->data + handle->numFds, sizeof(int)*handle->numInts); return err; } status_t Parcel::writeFileDescriptor(int fd) { flat_binder_object obj; obj.type = BINDER_TYPE_FD; obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS; obj.handle = fd; obj.cookie = (void*)0; return writeObject(obj, true); } status_t Parcel::writeDupFileDescriptor(int fd) { flat_binder_object obj; obj.type = BINDER_TYPE_FD; obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS; obj.handle = dup(fd); obj.cookie = (void*)1; return writeObject(obj, true); } status_t Parcel::write(const Flattenable& val) { status_t err; // size if needed size_t len = val.getFlattenedSize(); size_t fd_count = val.getFdCount(); err = this->writeInt32(len); if (err) return err; err = this->writeInt32(fd_count); if (err) return err; // payload void* buf = this->writeInplace(PAD_SIZE(len)); if (buf == NULL) return BAD_VALUE; int* fds = NULL; if (fd_count) { fds = new int[fd_count]; } err = val.flatten(buf, len, fds, fd_count); for (size_t i=0 ; i
writeDupFileDescriptor( fds[i] ); } if (fd_count) { delete [] fds; } return err; } status_t Parcel::writeObject(const flat_binder_object& val, bool nullMetaData) { const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity; const bool enoughObjects = mObjectsSize < mObjectsCapacity; if (enoughData && enoughObjects) { restart_write: *reinterpret_cast
(mData+mDataPos) = val; // Need to write meta-data? if (nullMetaData || val.binder != NULL) { mObjects[mObjectsSize] = mDataPos; acquire_object(ProcessState::self(), val, this); mObjectsSize++; } // remember if it's a file descriptor if (val.type == BINDER_TYPE_FD) { mHasFds = mFdsKnown = true; } return finishWrite(sizeof(flat_binder_object)); } if (!enoughData) { const status_t err = growData(sizeof(val)); if (err != NO_ERROR) return err; } if (!enoughObjects) { size_t newSize = ((mObjectsSize+2)*3)/2; size_t* objects = (size_t*)realloc(mObjects, newSize*sizeof(size_t)); if (objects == NULL) return NO_MEMORY; mObjects = objects; mObjectsCapacity = newSize; } goto restart_write; } void Parcel::remove(size_t start, size_t amt) { LOG_ALWAYS_FATAL("Parcel::remove() not yet implemented!"); } status_t Parcel::read(void* outData, size_t len) const { if ((mDataPos+PAD_SIZE(len)) >= mDataPos && (mDataPos+PAD_SIZE(len)) <= mDataSize) { memcpy(outData, mData+mDataPos, len); mDataPos += PAD_SIZE(len); LOGV("read Setting data pos of %p to %d/n", this, mDataPos); return NO_ERROR; } return NOT_ENOUGH_DATA; } const void* Parcel::readInplace(size_t len) const { if ((mDataPos+PAD_SIZE(len)) >= mDataPos && (mDataPos+PAD_SIZE(len)) <= mDataSize) { const void* data = mData+mDataPos; mDataPos += PAD_SIZE(len); LOGV("readInplace Setting data pos of %p to %d/n", this, mDataPos); return data; } return NULL; } template
status_t Parcel::readAligned(T *pArg) const { COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE(sizeof(T)) == sizeof(T)); if ((mDataPos+sizeof(T)) <= mDataSize) { const void* data = mData+mDataPos; mDataPos += sizeof(T); *pArg = *reinterpret_cast
(data); return NO_ERROR; } else { return NOT_ENOUGH_DATA; } } template
T Parcel::readAligned() const { T result; if (readAligned(&result) != NO_ERROR) { result = 0; } return result; } template
status_t Parcel::writeAligned(T val) { COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE(sizeof(T)) == sizeof(T)); if ((mDataPos+sizeof(val)) <= mDataCapacity) { restart_write: *reinterpret_cast
(mData+mDataPos) = val; return finishWrite(sizeof(val)); } status_t err = growData(sizeof(val)); if (err == NO_ERROR) goto restart_write; return err; } status_t Parcel::readInt32(int32_t *pArg) const { return readAligned(pArg); } int32_t Parcel::readInt32() const { return readAligned
(); } status_t Parcel::readInt64(int64_t *pArg) const { return readAligned(pArg); } int64_t Parcel::readInt64() const { return readAligned
(); } status_t Parcel::readFloat(float *pArg) const { return readAligned(pArg); } float Parcel::readFloat() const { return readAligned
(); } status_t Parcel::readDouble(double *pArg) const { return readAligned(pArg); } double Parcel::readDouble() const { return readAligned
(); } status_t Parcel::readIntPtr(intptr_t *pArg) const { return readAligned(pArg); } intptr_t Parcel::readIntPtr() const { return readAligned
(); } const char* Parcel::readCString() const { const size_t avail = mDataSize-mDataPos; if (avail > 0) { const char* str = reinterpret_cast
(mData+mDataPos); // is the string's trailing NUL within the parcel's valid bounds? const char* eos = reinterpret_cast
(memchr(str, 0, avail)); if (eos) { const size_t len = eos - str; mDataPos += PAD_SIZE(len+1); LOGV("readCString Setting data pos of %p to %d/n", this, mDataPos); return str; } } return NULL; } String8 Parcel::readString8() const { int32_t size = readInt32(); // watch for potential int overflow adding 1 for trailing NUL if (size > 0 && size < INT32_MAX) { const char* str = (const char*)readInplace(size+1); if (str) return String8(str, size); } return String8(); } String16 Parcel::readString16() const { size_t len; const char16_t* str = readString16Inplace(&len); if (str) return String16(str, len); LOGE("Reading a NULL string not supported here."); return String16(); } const char16_t* Parcel::readString16Inplace(size_t* outLen) const { int32_t size = readInt32(); // watch for potential int overflow from size+1 if (size >= 0 && size < INT32_MAX) { *outLen = size; const char16_t* str = (const char16_t*)readInplace((size+1)*sizeof(char16_t)); if (str != NULL) { return str; } } *outLen = 0; return NULL; } sp
Parcel::readStrongBinder() const { sp
val; unflatten_binder(ProcessState::self(), *this, &val); return val; } wp
Parcel::readWeakBinder() const { wp
val; unflatten_binder(ProcessState::self(), *this, &val); return val; } native_handle* Parcel::readNativeHandle() const { int numFds, numInts; status_t err; err = readInt32(&numFds); if (err != NO_ERROR) return 0; err = readInt32(&numInts); if (err != NO_ERROR) return 0; native_handle* h = native_handle_create(numFds, numInts); for (int i=0 ; err==NO_ERROR && i
data[i] = dup(readFileDescriptor()); if (h->data[i] < 0) err = BAD_VALUE; } err = read(h->data + numFds, sizeof(int)*numInts); if (err != NO_ERROR) { native_handle_close(h); native_handle_delete(h); h = 0; } return h; } int Parcel::readFileDescriptor() const { const flat_binder_object* flat = readObject(true); if (flat) { switch (flat->type) { case BINDER_TYPE_FD: //LOGI("Returning file descriptor %ld from parcel %p/n", flat->handle, this); return flat->handle; } } return BAD_TYPE; } status_t Parcel::read(Flattenable& val) const { // size const size_t len = this->readInt32(); const size_t fd_count = this->readInt32(); // payload void const* buf = this->readInplace(PAD_SIZE(len)); if (buf == NULL) return BAD_VALUE; int* fds = NULL; if (fd_count) { fds = new int[fd_count]; } status_t err = NO_ERROR; for (size_t i=0 ; i
readFileDescriptor()); if (fds[i] < 0) err = BAD_VALUE; } if (err == NO_ERROR) { err = val.unflatten(buf, len, fds, fd_count); } if (fd_count) { delete [] fds; } return err; } const flat_binder_object* Parcel::readObject(bool nullMetaData) const { const size_t DPOS = mDataPos; if ((DPOS+sizeof(flat_binder_object)) <= mDataSize) { const flat_binder_object* obj = reinterpret_cast
(mData+DPOS); mDataPos = DPOS + sizeof(flat_binder_object); if (!nullMetaData && (obj->cookie == NULL && obj->binder == NULL)) { // When transferring a NULL object, we don't write it into // the object list, so we don't want to check for it when // reading. LOGV("readObject Setting data pos of %p to %d/n", this, mDataPos); return obj; } // Ensure that this object is valid... size_t* const OBJS = mObjects; const size_t N = mObjectsSize; size_t opos = mNextObjectHint; if (N > 0) { LOGV("Parcel %p looking for obj at %d, hint=%d/n", this, DPOS, opos); // Start at the current hint position, looking for an object at // the current data position. if (opos < N) { while (opos < (N-1) && OBJS[opos] < DPOS) { opos++; } } else { opos = N-1; } if (OBJS[opos] == DPOS) { // Found it! LOGV("Parcel found obj %d at index %d with forward search", this, DPOS, opos); mNextObjectHint = opos+1; LOGV("readObject Setting data pos of %p to %d/n", this, mDataPos); return obj; } // Look backwards for it... while (opos > 0 && OBJS[opos] > DPOS) { opos--; } if (OBJS[opos] == DPOS) { // Found it! LOGV("Parcel found obj %d at index %d with backward search", this, DPOS, opos); mNextObjectHint = opos+1; LOGV("readObject Setting data pos of %p to %d/n", this, mDataPos); return obj; } } LOGW("Attempt to read object from Parcel %p at offset %d that is not in the object list", this, DPOS); } return NULL; } void Parcel::closeFileDescriptors() { size_t i = mObjectsSize; if (i > 0) { //LOGI("Closing file descriptors for %d objects...", mObjectsSize); } while (i > 0) { i--; const flat_binder_object* flat = reinterpret_cast
(mData+mObjects[i]); if (flat->type == BINDER_TYPE_FD) { //LOGI("Closing fd: %ld/n", flat->handle); close(flat->handle); } } } const uint8_t* Parcel::ipcData() const { return mData; } size_t Parcel::ipcDataSize() const { return (mDataSize > mDataPos ? mDataSize : mDataPos); } const size_t* Parcel::ipcObjects() const { return mObjects; } size_t Parcel::ipcObjectsCount() const { return mObjectsSize; } void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize, const size_t* objects, size_t objectsCount, release_func relFunc, void* relCookie) { freeDataNoInit(); mError = NO_ERROR; mData = const_cast
(data); mDataSize = mDataCapacity = dataSize; //LOGI("setDataReference Setting data size of %p to %lu (pid=%d)/n", this, mDataSize, getpid()); mDataPos = 0; LOGV("setDataReference Setting data pos of %p to %d/n", this, mDataPos); mObjects = const_cast
(objects); mObjectsSize = mObjectsCapacity = objectsCount; mNextObjectHint = 0; mOwner = relFunc; mOwnerCookie = relCookie; scanForFds(); } void Parcel::print(TextOutput& to, uint32_t flags) const { to << "Parcel("; if (errorCheck() != NO_ERROR) { const status_t err = errorCheck(); to << "Error: " << (void*)err << " /"" << strerror(-err) << "/""; } else if (dataSize() > 0) { const uint8_t* DATA = data(); to << indent << HexDump(DATA, dataSize()) << dedent; const size_t* OBJS = objects(); const size_t N = objectsCount(); for (size_t i=0; i
(DATA+OBJS[i]); to << endl << "Object #" << i << " @ " << (void*)OBJS[i] << ": " << TypeCode(flat->type & 0x7f7f7f00) << " = " << flat->binder; } } else { to << "NULL"; } to << ")"; } void Parcel::releaseObjects() { const sp
proc(ProcessState::self()); size_t i = mObjectsSize; uint8_t* const data = mData; size_t* const objects = mObjects; while (i > 0) { i--; const flat_binder_object* flat = reinterpret_cast
(data+objects[i]); release_object(proc, *flat, this); } } void Parcel::acquireObjects() { const sp
proc(ProcessState::self()); size_t i = mObjectsSize; uint8_t* const data = mData; size_t* const objects = mObjects; while (i > 0) { i--; const flat_binder_object* flat = reinterpret_cast
(data+objects[i]); acquire_object(proc, *flat, this); } } void Parcel::freeData() { freeDataNoInit(); initState(); } void Parcel::freeDataNoInit() { if (mOwner) { //LOGI("Freeing data ref of %p (pid=%d)/n", this, getpid()); mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie); } else { releaseObjects(); if (mData) free(mData); if (mObjects) free(mObjects); } } status_t Parcel::growData(size_t len) { size_t newSize = ((mDataSize+len)*3)/2; return (newSize <= mDataSize) ? (status_t) NO_MEMORY : continueWrite(newSize); } status_t Parcel::restartWrite(size_t desired) { if (mOwner) { freeData(); return continueWrite(desired); } uint8_t* data = (uint8_t*)realloc(mData, desired); if (!data && desired > mDataCapacity) { mError = NO_MEMORY; return NO_MEMORY; } releaseObjects(); if (data) { mData = data; mDataCapacity = desired; } mDataSize = mDataPos = 0; LOGV("restartWrite Setting data size of %p to %d/n", this, mDataSize); LOGV("restartWrite Setting data pos of %p to %d/n", this, mDataPos); free(mObjects); mObjects = NULL; mObjectsSize = mObjectsCapacity = 0; mNextObjectHint = 0; mHasFds = false; mFdsKnown = true; return NO_ERROR; } status_t Parcel::continueWrite(size_t desired) { // If shrinking, first adjust for any objects that appear // after the new data size. size_t objectsSize = mObjectsSize; if (desired < mDataSize) { if (desired == 0) { objectsSize = 0; } else { while (objectsSize > 0) { if (mObjects[objectsSize-1] < desired) break; objectsSize--; } } } if (mOwner) { // If the size is going to zero, just release the owner's data. if (desired == 0) { freeData(); return NO_ERROR; } // If there is a different owner, we need to take // posession. uint8_t* data = (uint8_t*)malloc(desired); if (!data) { mError = NO_MEMORY; return NO_MEMORY; } size_t* objects = NULL; if (objectsSize) { objects = (size_t*)malloc(objectsSize*sizeof(size_t)); if (!objects) { mError = NO_MEMORY; return NO_MEMORY; } // Little hack to only acquire references on objects // we will be keeping. size_t oldObjectsSize = mObjectsSize; mObjectsSize = objectsSize; acquireObjects(); mObjectsSize = oldObjectsSize; } if (mData) { memcpy(data, mData, mDataSize < desired ? mDataSize : desired); } if (objects && mObjects) { memcpy(objects, mObjects, objectsSize*sizeof(size_t)); } //LOGI("Freeing data ref of %p (pid=%d)/n", this, getpid()); mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie); mOwner = NULL; mData = data; mObjects = objects; mDataSize = (mDataSize < desired) ? mDataSize : desired; LOGV("continueWrite Setting data size of %p to %d/n", this, mDataSize); mDataCapacity = desired; mObjectsSize = mObjectsCapacity = objectsSize; mNextObjectHint = 0; } else if (mData) { if (objectsSize < mObjectsSize) { // Need to release refs on any objects we are dropping. const sp
proc(ProcessState::self()); for (size_t i=objectsSize; i
(mData+mObjects[i]); if (flat->type == BINDER_TYPE_FD) { // will need to rescan because we may have lopped off the only FDs mFdsKnown = false; } release_object(proc, *flat, this); } size_t* objects = (size_t*)realloc(mObjects, objectsSize*sizeof(size_t)); if (objects) { mObjects = objects; } mObjectsSize = objectsSize; mNextObjectHint = 0; } // We own the data, so we can just do a realloc(). if (desired > mDataCapacity) { uint8_t* data = (uint8_t*)realloc(mData, desired); if (data) { mData = data; mDataCapacity = desired; } else if (desired > mDataCapacity) { mError = NO_MEMORY; return NO_MEMORY; } } else { mDataSize = desired; LOGV("continueWrite Setting data size of %p to %d/n", this, mDataSize); if (mDataPos > desired) { mDataPos = desired; LOGV("continueWrite Setting data pos of %p to %d/n", this, mDataPos); } } } else { // This is the first data. Easy! uint8_t* data = (uint8_t*)malloc(desired); if (!data) { mError = NO_MEMORY; return NO_MEMORY; } if(!(mDataCapacity == 0 && mObjects == NULL && mObjectsCapacity == 0)) { LOGE("continueWrite: %d/%p/%d/%d", mDataCapacity, mObjects, mObjectsCapacity, desired); } mData = data; mDataSize = mDataPos = 0; LOGV("continueWrite Setting data size of %p to %d/n", this, mDataSize); LOGV("continueWrite Setting data pos of %p to %d/n", this, mDataPos); mDataCapacity = desired; } return NO_ERROR; } void Parcel::initState() { mError = NO_ERROR; mData = 0; mDataSize = 0; mDataCapacity = 0; mDataPos = 0; LOGV("initState Setting data size of %p to %d/n", this, mDataSize); LOGV("initState Setting data pos of %p to %d/n", this, mDataPos); mObjects = NULL; mObjectsSize = 0; mObjectsCapacity = 0; mNextObjectHint = 0; mHasFds = false; mFdsKnown = true; mOwner = NULL; } void Parcel::scanForFds() const { bool hasFds = false; for (size_t i=0; i
(mData + mObjects[i]); if (flat->type == BINDER_TYPE_FD) { hasFds = true; break; } } mHasFds = hasFds; mFdsKnown = true; } }; // namespace android

本文的源码使用的是Android 2.1版本。

转载于:https://www.cnblogs.com/roccheung/p/5797395.html

你可能感兴趣的文章
关于运动
查看>>
GridView的RowCommand事件传两个或以上参数
查看>>
剑指Offer编程题2——替换空格
查看>>
ubuntu切换到root
查看>>
MYSQL limit用法
查看>>
Windows7下出现“不支持此接口”的解决方案
查看>>
实现dhtmlxTree树型控件单击展开收缩功能
查看>>
不能在DropDownList 中选择多个项
查看>>
【Unity渲染】Camera RenderToCubemap 渲染到立方体纹理
查看>>
n2n网络穿透内网
查看>>
让“懒惰” Linux 运维工程师事半功倍的 10 个关键技巧!
查看>>
写给自己看的小设计4 - 对象设计通用原则之扩展原则
查看>>
oem 重建
查看>>
LNMP之Nginx
查看>>
构造函数中的异常处理(转)
查看>>
SI Macro
查看>>
jquery动态调整div大小使其宽度始终为浏览器宽度
查看>>
这篇文章主要为大家详细介绍了jQuery密码强度验证控件使用详解的相关资料,具有一定的参考价值,感兴趣的小伙伴们可以参考一下...
查看>>
寒假作业
查看>>
iframe内联网页的应用
查看>>